Technical Report #2 Electrical System Existing Conditions and Building Load Summary

Maryland Transportation Authority Police Training Facility

Hawkins Point, Baltimore, MD

Leah C. Clark

Lighting/Electrical

November 2, 2007

Electrical Consultant: T. Dannerth

Table of Contents

Executive Summary	1
Power Distribution System	2
Distribution System Overview	2
Utility to Owner Transfer Point	2
Voltage Systems	2
Transformers	2
Emergency Power Systems	2 3 3
Over-current Protection Devices	3
Locations of Electrical Equipment	4
Power Factor Correction	5
Design Considerations	5
Lighting Loads	5
Mechanical and Other Loads	6
Service Entrance Size	7
Utility Company Information	9
Communications Systems	10
Communications/Data Systems	10
Access Control (Security) System	10
Fire Alarm System	10
Closed Circuit TV (CCTV)	10
TV Antenna System	11
Appendices	12
Appendix A: Single Line Diagram	12
Appendix B: Feeder Schedule	13
Appendix C: Luminaire Schedule	14
Appendix D: Utility Information	23

EXECUTIVE SUMMARY

Technical Report 2, Electrical System Existing Conditions and Building Load Summary, examines the existing lighting system of the Maryland Transportation Authority Police Training Facility. The report looks at the power distribution system and the communication systems of the building. Descriptions of the characteristics of the building systems and a summary of the total building electrical system are presented in the report that follows and were developed based on an exploration of the design drawings and specifications. Also included in the report are overcorrect devices, transformers, and lighting and mechanical loading. An appendix provides items such single line diagrams, tables, and rate schedules that supplement the report.

The Maryland Transportation Authority Police Training Facility uses a radial type electrical distribution system to supply the grounds with 480Y/277V, 3-phase power. Baltimore Gas & Electric, the electrical utility, supplies power at 13.8 kV to the distribution transformer located on the site. MdTA has three transformers to step-down from 480/277V to 208/120V. These transformers are located in the electrical rooms as defined in Table 1.

Loads on the distribution system are comprised mainly of lighting and mechanical loads. A majority of the lighting loads are powered by 277V single-phase power, however, some are power by 120V single-phase due to unique requirements. Appendix A contains the Luminaire Schedule, which details the lighting loads. Mechanical loads consist mostly of air handling units requiring 3-phase, 460V power. All mechanical loads are detailed in Table 4. Additional loads due to plumbing and architectural requirements are detailed in Table 5. Of these, the elevator is most notable, drawing 302 KVA at 460V, 3-phase power.

Communication systems are provided throughout the building. Telephone service raceways are provided from a main board connected to external telephone lines. A raceway system is also provided for computer networking. Access control systems, fire alarm systems, closed circuit television, and a TV antenna system are also discussed.

POWER DISTRIBUTION SYSTEMS

Distribution System Overview

The Maryland Transportation Authority Police Training Facility utilizes a radial type distribution system. The power distribution system consists of an electrical service provided by Baltimore Gas & Electric (BG&E). Power is available from the existing 13.8 kilovolt primary overhead 3-phase lines located under the 34.5 kilovolt overhead pole mounted line crossing the property line. From the overhead 13.8 kilovolts lines, BG&E supplies a set of primary conductors through conduit to a set of underground conduits encased in concrete, supplied by the owner, running under the building perimeter to the proposed pad mounted BG&E transformer, with the transformer pad being provided by MdTA. From the secondary of the pad mounted transformer, multiple sets of conductors in conduits encased in concrete will run underground to the main switchboard just inside the outer wall of the building. The conductors will be provided BG&E, while the underground ductbank will be provided by MdTA. Refer to Appendix A to view the Single Line Diagram for a better understanding of the interconnectivity of the distribution system and Appendix B for the accompanying Feeder Schedule.

Utility to Owner Transfer Point

The wiring from the utility transformer to the main circuit breaker is to be supplied by BG&E, while the conduit is to be supplied by the owner. The main 1200 amp circuit breaker marks the transfer point from utility to owner. On one side of the circuit breaker is the Baltimore Gas & Electric utility meters and on the other side is the customer meter.

Voltage Systems

A combination of 480Y/277V, 3-phase, 4-wire and 208Y/120V, 3-phase, 4-wire voltages are utilized in the building. Mechanical equipment over 1 HP will be served by 480V, 3-phase panels. Lighting will be served at 277V except special lighting requiring 120V that will be served from 208/120V, 3-phase lighting panels. General purpose receptacles, communication systems and most appliances will be fed from the 208/120V, 3-phase appliance / lighting panels.

Transformers

With the exception of the main utility transformer, voltages are transformed from 480Y/277V to 208Y/120V within the MdTA Police Training Facility. The following schedule lists the pertinent information regarding the transformers in the building.

	INDIVIDUAL TRANSFORMER SCHEDULE							
TAG	PRIMARY VOLTAGE	SECONDARY VOLTAGE	SIZE	TYPE	TEMP. RISE	TAPS	MOUNTING	REMARKS
T-0	13800V,3PH,3W	480Y/277V,3PH,4W	N/A	N/A	N/A	N/A	PAD MOUNTED ON GRADE	
T-1	480V,3PH,3W.	208Y/120V,3PH,4W	75	DRY TYPE	80 DEGREES C		PAD MOUNTED ON FLOOR	K-13 RATED
T-2	480V,3PH,3W.	208Y/120V,3PH,4W	112.5	DRY TYPE	80 DEGREES C		PAD MOUNTED ON FLOOR	
T-3	480V,3PH,3W.	208Y/120V,3PH,4W	45	DRY TYPE	80 DEGREES C		WALL MOUNTED	
	Table 1							

Emergency Power Systems

Emergency power is provided by an outdoor generator. The generator is 450KW at 480/277, 3-phase, 4 wire, with a 1000A circuit breaker. The Generator Distribution Panel (GDP), rated at 1200A, receives power from the generator. Two automatic transfer switches control the switch between normal and emergency power. Life safety lighting fixtures are all equipped with battery packs.

Over-current Protection Devices

A combination of circuit breakers and fused and unfused switches are used throughout the MdTA Police Training Facility. The Main Distribution Panel (MDP) is protected by a 1200A circuit breaker with TVSS protection and customer metering. The Generator has a 1000A circuit breaker leading to the GDP. 600A circuit breakers protect the feeder from GDP to the 600A transfer switch and the feeder from the 600A transfer switch to the Distribution Panel (DPTF). Similarly, 400A circuit breaker protects the feeder from GDP to the 400A transfer switch and the feeder from the 400A transfer switch to the Standby Distribution Panel (SBDP). A 600A circuit breaker provides protection from MDP to Distribution Panel (DPTF) and a 400A circuit breaker provides protection from MDP and GDP to the Standby Distribution Panel (SBDP). All other panels and loads are protected with circuit breakers or fused or unfused switches according to their individual requirements. Branch circuits are protected with individual circuit breakers providing redundant protection for the service entrance. Additionally, some of the mechanical equipment has disconnect switches. Locations of Electrical Equipment

The generator and utility transformer are located on the exterior site. All main switchgear components located inside the building are on the first floor in either electrical room 124A or 117. This information, as well as the drawing numbers where the switchgear is located, can be found in the table below.

	MAIN SWITCHGEAR LOCATIONS					
Equipment Tag	Туре	Floor Level	Room Name	Room Number	1/8 Scale Plan	Enlarged Plan
MDP	Main Switchboard	First	Main Electrical	124A	E103	E201
DPTF	Distribution Panel	First	Electrical	117	E103	
SBDP	Distribution Panel	First	Main Electrical	124A	E103	E201
GDP	Generator Distribution Panel	First	Main Electrical	124A	E103	E201
Generator	Generator	Exterior on Grade	Exterior		E103	E201
ATS DPTF	Automatic Transfer Switch	First	Main Electrical	124A	E103	E201
ATS SBDP	Automatic Transfer Switch	First	Main Electrical	124A	E103	E201
T-0	Utility Transformer	Exterior on Grade	Exterior		E103	E201
T-1	Transformer	First	Electrical	117	E103	
T-2	Transformer	First	Electrical	117	E103	
T-3	Transformer	First	Main Electrical	124A	E103	E201

Table 2

Panelboards are located throughout the building. Placement of panelboards in the building, as well as the main size for the panels, is listed in the table that follows. Plans showing the locations are also referenced in the table.

PANELBOARD LOCATIONS						
Equipment Tag	Main Size	Voltage	Floor Level	Room Name	Room Number	Floor Plan
RPTF1	150	208/120	First	Electrical	117	E103
RPTM2	150	208/120	Second	Electrical 2	222	E104
RPTM1	175	208/120	First	Electrical	117	E103
LPTF1	100	480/277	First	Electrical	117	E103
LPFR1	150	480/277	First	Main Electrical	124A	E103 / E201
RPFR2	175	208/120	First	Main Electrical	124A	E103 / E201
RPTF2	100	208/120	Second	Electrical 2	222	E104
RPG1	100	208/120	First	Telecom / Electric	132	E103
RPTM	300	208/120	First	Electrical	117	E103

Table 3

Power Factor Correction

There are no power factor correction devices in the Maryland Transportation Authority Police Training Facility.

Design Considerations

The electrical distribution system requires no special design considerations.

Lighting Loads

The lighting system throughout the MdTA Police Training Facility consists mostly of fluorescent lighting. Recessed 2' by 4' luminaries of various types are used in classrooms, circulation spaces, the range, office spaces, and others. Most lighting is powered at 277volts with the exception of special lighting at 120 volts. Metal halide, compact fluorescent, and halogen lamps are also found in the facility's lighting design.

Lighting loads are listed with their electrical characteristics in the Luminaire Schedule in Appendix C. Also, included in Appendix C are the various ballast cutsheets referenced to complete the Luminaire Schedule.

Mechanical Loads

Various mechanical system components are utilized throughout the building, which require electrical power. The table below lists load, voltage and phase, power factor, and equivalent load in kilowatts for the various mechanical equipment.

Note: A power factor of 0.95 was assumed for motors larger than 5 hp, and a power factor of 0.85 was assumed for motors smaller than 5 hp.

EQUIPMENT TAG	DESCRIPTION	LOAD (KVA)	VOLTAGE & PHASE	POWER FACTOR	kW
	MECHANICAL		4000 //0 +	0.05	54.00
AHU-1		54	460V/3Φ	0.95	51.30
		60	460V/3Φ	0.95	57.00
AHU-2		54	460V/3Φ	0.95	51.30
	AIR HANDLING UNIT	60	460V/3Φ	0.95	57.00
AHU-3	AIR HANDLING UNIT	52.47	460V/3Φ	0.95	49.85
AHU-4 SUPPLY		17.45	460V/3Φ	0.95	16.58
AHU-4 RETURN		9.15	460V/3Φ	0.95	8.69
AHU-5 SUPPLY	AIR HANDLING UNIT	17.45	460V/3Φ	0.95	16.58
AHU-5 RETURN	AIR HANDLING UNIT	9.15	460V/3Φ	0.95	8.69
AHU-6		9.15	460V/3Φ	0.95	8.69
AHU-7 SUPPLY	AIR HANDLING UNIT	9.15	460V/3Φ	0.95	8.69
AHU-7 RETURN	AIR HANDLING UNIT	6.33	460V/3Φ	0.95	6.01
AHU-8		18.63	460V/3Φ	0.95	17.70
BOILER-1	BOILER	0.4	277V/1Φ	0.85	0.34
BOILER-2	BOILER	0.4	277V/1Φ	0.85	0.34
UH-1	UNIT HEATER	0.2	277V/1Φ	0.85	0.17
UH-2	UNIT HEATER	0.2	277V/1Φ	0.85	0.17
UH-3	UNIT HEATER	0.03	460V/3Φ	0.95	0.03
UH-4	UNIT HEATER	0.03	460V/3Φ	0.95	0.03
UH-5 & 5A	UNIT HEATERS	15	460V/3Φ	0.95	14.25
UH-6 & 7	UNIT HEATERS	15	460V/3Φ	0.95	14.25
UH-8 & 9	UNIT HEATERS	15	460V/3Φ	0.95	14.25
CUH-1&2		0.36	277V/1Φ	0.85	0.31
DWH-1	WATER HEATER	0.6	277V/1Φ	0.85	0.51
HWP-1	HOT WATER PUMP	2	208V/3Φ	0.95	1.90
HWP-2	HOT WATER PUMP	2	208V/3Φ	0.95	1.90
	MOTOR DAMPER RM#118	0.3	277V/1Φ	0.85	0.26
	MOTOR DAMPER RM#131	0.3	277V/1Φ	0.85	0.26
EF-1	EXHAUST FAN	0.4	277V/1Φ	0.85	0.34
EF-2	EXHAUST FAN	0.4	277V/1Φ	0.85	0.34
EF-3	EXHAUST FAN	0.6	277V/1Φ	0.85	0.51
EF-4	EXHAUST FAN	0.2	277V/1Φ	0.85	0.17
EF-5	EXHAUST FAN	0.6	277V/1Φ	0.85	0.51
EF-6	EXHAUST FAN	2.6	208V/3Φ	0.85	2.21
EF-7	EXHAUST FAN	0.3	277V/1Φ	0.85	0.26
EF-8	EXHAUST FAN	0.12	277V/1Φ	0.85	0.10
EF-9	EXHAUST FAN	0.6	277V/1Φ	0.85	0.51
CP-1	PUMP	1.2	120V/1Φ	0.85	1.02
CP-2	PUMP	1.2	120V/1Φ	0.85	1.02
AC-1	RM#118	2.7	208V/3Φ	0.85	2.30
CU-6	CONDITIONING UNIT	54	460V/3Φ	0.95	51.30
CU-7	CONDITIONING UNIT	65.01	460V/3Φ	0.85	55.26

Table 4

Note: A power factor of 0.95 was assumed for motors larger than 5 hp, and a power factor of 0.85 was assumed for motors smaller than 5 hp.

EQUIPMENT TAG	DESCRIPTION	LOAD (KVA)	VOLTAGE & PHASE	POWER FACTOR	kW
	PLUMBING L	OADS			
	EYE WASH	0.6	277V/1Φ	0.85	0.51
P-1	AQUASTAT	0.2	277V/1Φ	0.85	0.17
	ARCHITECTURA	AL LOADS			
ELEVATOR		301.6	460V/3Φ	0.95	286.52
	ELEVATOR CAB HEATER/FAN	0.6	277V/1Φ	0.85	0.51
	BULLET TRAP MOTOR 1/2HP	4.155	480V/3Φ	0.95	3.95
	BULLET TRAP MOTOR 1/2HP	0.915	480V/3Φ	0.85	0.78
	BULLET TRAP MOTOR 3 HP	4.155	480V/3Φ	0.95	3.95
	TARGET ACTUATORS 11&12	1.2	277V/1Φ	0.85	1.02
	TARGET ACTUATORS 13&14	1.2	277V/1Φ	0.85	1.02
	TARGET ACTUATORS 15&16	1.2	277V/1Φ	0.85	1.02
	TARGET ACTUATORS 17&18	1.2	277V/1Φ	0.85	1.02
	TARGET ACTUATORS 19&20	1.2	277V/1Φ	0.85	1.02
	GENSET BLOCK HEATER	1.2	277V/1Φ	0.85	1.02
	GENSET BATTERY CHARGER	1.2	277V/1Φ	0.85	1.02
	ELEC. WATER COOLER #1	0.5	120V/1Φ	0.85	0.43
	ELEC. WATER COOLER #2	0.5	120V/1Φ	0.85	0.43

Table 5

Service Entrance Size

A series of calculations were done to indicate the required size of the service entrance during various phases of the design process. Method 1 corresponds to the conceptual and schematic phases, Method 2 to the design development phase, and Method 3 to the working drawings through closeout phases.

Method 1 for sizing the service entrance gives a load per square foot estimate using VA/ft² for various building types to determine amps required. The VA/ft² value of 8 VA/ft² is from the Loading Information for Various Building Types table that was received from the electrical consultant for senior thesis. I assumed the training facility to be a college classroom building, as it seemed to be the closest in terms of function.

SERVICE ENTRANCE SIZE - METHOD 1							
ft ²	ft ² VA/ft ² VA VOLTAGE PHASE MULTIPLIER AMPS						
41200 8 329600 480 3 1.73 397							

Table 6

The second method for sizing the service entrance multiplies the gross square foot area times the sum of the average demand loads per category. The VA/ft² values used for receptacles, fans/pumps, and heating and cooling loads are assumptions we were advised to make. The lighting value is from NFPA 70: National Electrical Code (NEC 2005) Table 220.10 General Lighting Loads by Occupancy.

SERVICE ENTRANCE SIZE - METHOD 2							
LOAD	ft ²	VA/ft ²	VA	VOLTAGE	PHASE	MULTIPLIER	AMPS
RECEPTACLES	41200	1	41200	120	1	1	343
FANS / PUMPS	41200	2	82400	480	3	1.73	99
HVAC	41200	7	288400	480	3	1.73	347
LIGHTING	41200	3.5	144200	480	3	1.73	174
SUMMARY			 Tabl				964

Table 7

The third method uses a combination of the total loads from lighting and appliance panelboard schedules and mechanical equipment and other loads not found in the lighting and appliance panelboard schedules.

	SERVICE ENTRANCE SIZE - METHOD 3					
LOAD / PANELBOARD	KVA	VOLTAGE	PHASE	MULTIPLIER	DEMAND FACTOR	AMPS
LPFR1	25.52	480	3	1.73	0.8	24.59
RPFR2	26.5	120	1	1	0.8	176.67
RPTF2	17.5	120	1	1	0.8	116.67
RPG1	3.6	120	1	1	0.8	24.00
RPTM	64	120	1	1	0.8	426.67
RPFTF1	36	120	1	1	0.8	240.00
RPTM2	17.775	120	1	1	0.8	118.50
RPTM1	23.86	120	1	1	0.8	159.07
LPTF1	27.5	480	3	1.73	0.8	26.49
MECHANICAL	880	480	3	1.73	0.8	847.78
TOTAL						2160.43

Table 8

The following table contains a summary of the required amps and the service entrance size based on the calculations of the three methods above. The service entrance size was determined from a list of standard sizes of 1600, 2000, 2500, 3000, and 4000 amps (from *Electrical Systems in Buildings* by S. David Hughes). I acknowledge that there are standard sizes at lower amperes, however this is the best source of information presently available, so sizes were chosen based on the above amperages. The actual service entrance size from the design documents is also included.

SERVICE ENTRANCE SIZE - SUMMARY							
SIZE METHOD 1 METHOD 2 METHOD 3 ACTUAL							
REQUIRED SIZE	REQUIRED SIZE 964 A 943 A 2160 A						
SERVICE ENTRANCE SIZE 1600 A 1600 A 2500 A 1200 A							

Table 9

Utility Company Information

Electric utility service is provided to the Maryland Transportation Authority Police Training facility by Baltimore Gas & Electric (BG&E). The General Service Small Rate Schedule (Schedule GS) applies to the training facility.

A breakdown of the utility rate schedule information, as well as contact information for Baltimore Gas & Electric, can be viewed in Appendix D.

COMMUNICATION SYSTEMS

Communications/Data Systems

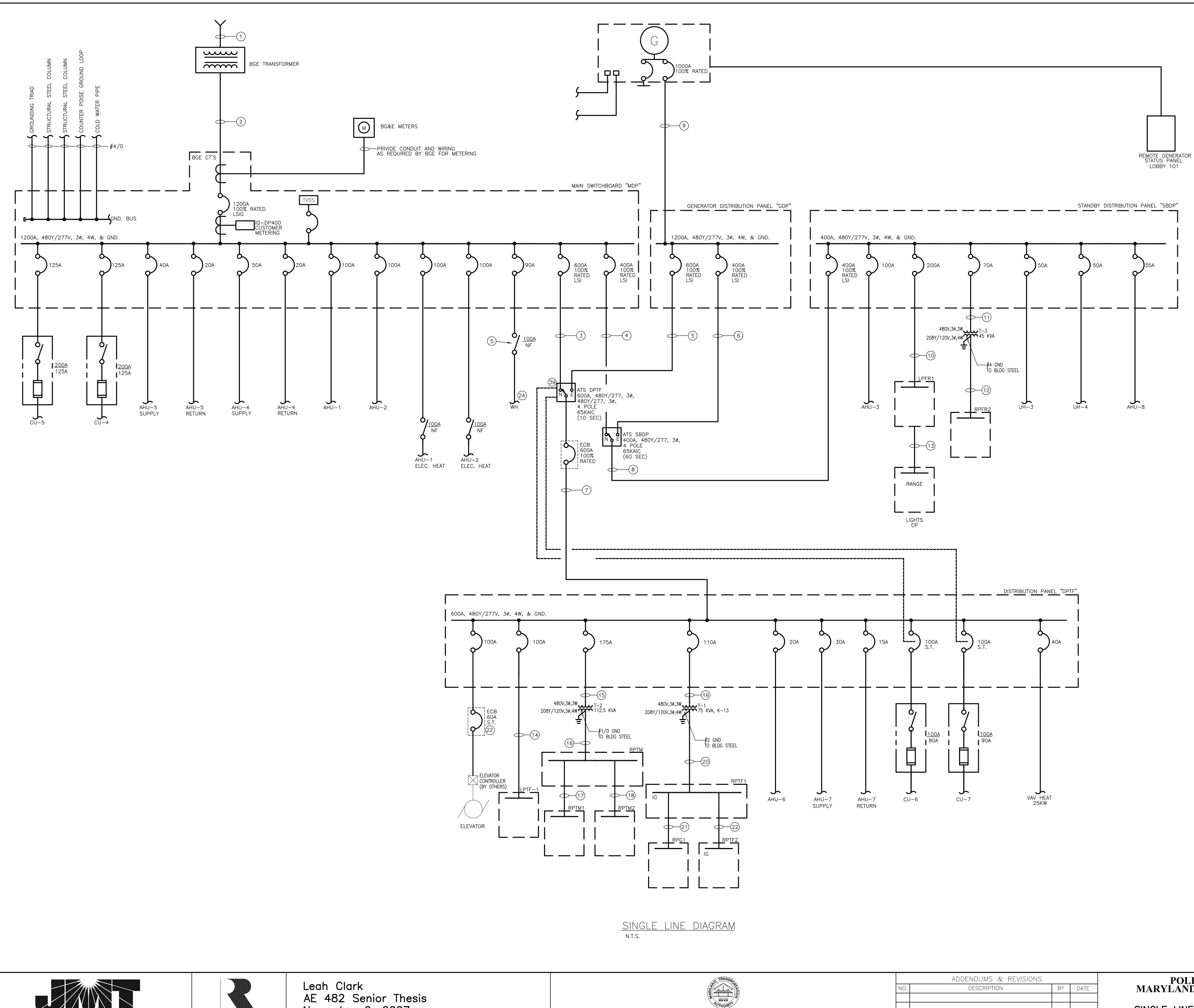
A raceway system only will be provided for the telephone system. Cables will be brought by Verizon in two 4" PVC conduits (conduits provided by owner) that will be run underground from the board to a pole East of the building perimeter road and connected to the existing overhead telephone lines.

A raceway system only will be provided for the computer network as well. One data outlet per workstation at offices, classrooms, reception, Weapon Repair room, control room, and Weapon Cleaning room are provided. All outlet conduits shall be run underground to a 4'x8'x0.75' board in electrical room 117.

Access Control (Security) System

A controlled access security system is capable of recording, reporting, and alarming both locally and remotely based on a set of detectors within the facility. Magnetic switches are provided at exit doors and doors into weapons and ammunition storage rooms, the control room, the weapons cleaning and the repair rooms. Door entry controllers are located at the entry doors to the Weapons and Ammunition Storage rooms. Movement Sensors are provided at the weapons and ammunition storage rooms.

Fire Alarm System


The fire alarm system is a multiplex addressable type with the main panel in the electrical room and the annunciator in the reception room. These are connected via a telephone dialer to the fire department or a remote monitoring service company. Pull stations, audio/visual signals, duct detectors, smoke detectors, and head detectors are located throughout the building.

Closed Circuit TV (CCTV)

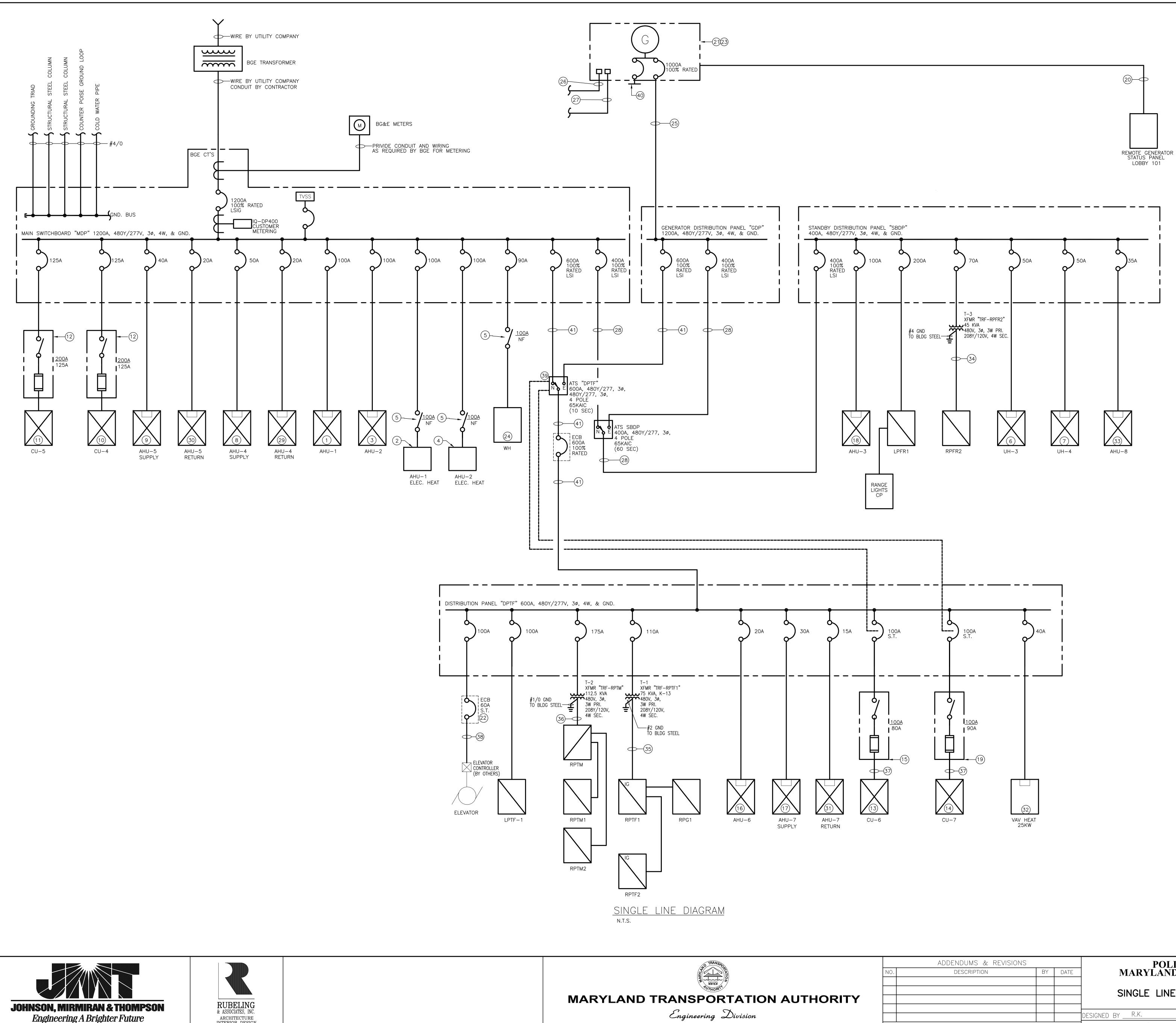
A Closed Circuit TV system is utilized with a monitoring console at the reception desk to ensure security in the training facility.

TV Antenna System

TV antenna system is provided via a concealed raceway system with an antenna system connected to a roof mounted dish to pick up regular broadcasting and other signals put out by the state and federal agencies. TV outlets are provided in each classroom for the ceiling mounted TV sets.

AE 482 Senior Thesis November 2, 2007 Single Line Diagram

MARYLAND TRANSPORTATION AUTHORIT


Engineering Division

GENERAL NO

		ADDENDUMS & REVISION	٧S		POLIC	E TRAINING FACILI	TY
	NO.	DESCRIPTION	BY	DATE	MARYLAND T	TRANSPORTATION A	ÛTHORITY
					⊢	AWKINS POINT (BALTIMORE CITY)	
T\/					SINGLE LINE D	DIAGRAM AND FIXTUR	RE SCHEDULE
TY					-		
					DESIGNED BY <u>R.K.</u>	DRAWN BY N.S.	CHECKED BY R.K.
			I	I	CONST. REVIEW BY <u>R.K.</u>	DATE	SCALE <u>N.T.S.</u>

<u>general</u> notes	
1. REFER TO SCHEDULES AND/OR FLOOR PLANS FOR WIRE SIZES.	
DRAWING NOTES	
 AHU-1,480V,3Ø,50 HP WITH INTEGRAL STARTER/D AHU-1,480V,3Ø,60KW ELECTRIC HEAT. 	DISCONNECT.
3 AHU-2,480V,3Ø,50 HP WITH INTEGRAL STARTER/D	DISCONNECT.
(4) AHU-2,480V,3Ø,60KW ELECTRIC HEAT.	
(5) HEAVY DUTY 100A,600VAC,3POLE NON-FUSED DIS IN A NEMA 12 ENCLOSURE UNIT MTD.	SCONNECT SWITCH
 (6) UH-3, 480V,3ø 30 KW ELEC. HEAT WITH INTEGRA (7) UH-4, 480V,3ø 30 KW ELEC. HEAT WITH INTEGRA 	·
8 AHU-4,480V,3Ø,15HP SUPPLY FAN WITH INTEGRAL	
9 AHU-5,480V,3Ø,15HP SUPPLY FAN WITH INTEGRAL	_ STARTER/DISCONNECT.
 (10) CU-4,480V,3ø,117 FLA. (11) CU-5,480V,3ø,117 FLA. 	
12) HEAVY DUTY 200A,600VAC,3POLE FUSED DISCONN 125A IN A NEMA 3R ENCLOSURE UNIT MOUNTED.	
LOCATION WITH THE MECHANICAL UNIT MANUFACTU (13) CU-6,480V,3¢,65 FLA.	
 (14) CU-7,480V,3ø,65 FA. 	
(15) HEAVY DUTY 100A,600VAC,3POLE FUSED DISCONN AT 80A IN A NEMA 3R ENCLOSURE UNIT MOUNTE	D. COORDINATE EXACT
(16) AHU-6,480V,3Ø,7.5 HP WITH INTEGRAL STARTER/	
(17) AHU-7,480V,3Ø,7.5 HP SUPPLY FAN WITH INTEGR	
18 AHU-3,480V,3Ø,15 HP WITH INTEGRAL STARTER/D	
(19) HEAVY DUTY 100A,600VAC,3POLE FUSED DISCONN AT 90A IN A NEMA 3R ENCLOSURE UNIT MOUNTE LOCATION WITH THE MECHANICAL UNIT MANUFACTU	D. COORDINATE EXACT
20 PROVIDE REMOTE GENSET ANNUNCIATOR PANEL IN	
 (21) DISCONNECT BONDING CONNECTION FROM NEUTRA (22) 60A ENCLOSED CIRCUIT BREAKER WITH SHUNT TR 	
(23) OUTDOOR GENERATOR 450KW, 480/277 3ø, 4W,	
ENCLOSURE.	WEATHEN TINOUF
 (24) 54KW WATER HEATER (25) (12)#400KCMIL & (3)#2/0GND IN (3)4" C AND 	(1) SPARE 4"C
 BATTERY CHARGER CIRCUIT TO PANEL RPFR2-32. PANEL RPFR2-30, BOTH IN 1-1/4"C. 	BLOCK HEATER CIRCUIT TO
27 ATS CONTROL WIRE	
(28) PROVIDE 2 SETS (4)#3/0&(1)#3GND, IN 2"C.	
 (29) AHU-4,480V,3ø,7.5HP RETURN FAN WITH INTEGRA (30) AHU-5,480V,3ø,7.5HP RETURN FAN WITH INTEGRA 	
 (31) AHU-7,480V,3Ø,5HP RETURN FAN WITH INTEGRAL (32) 10KW VAV BOX 109 ELECTRIC HEAT WITH INTEGRA 	
 (32) 10KW VAV BOX 109 ELECTRIC HEAT WITH INTEGRA (33) AHU-8,480V,3Ø, 27MCA WITH INTEGRAL STARTER/ 	
 (34) PROVIDE (4)#1/0&(1)#4GND, IN 2"C. (35) PROVIDE (5)#4/0, (1)#2GND. & (1)#2 IG, IN 2- 	1/2"C. (DOUBLE NEUTRAL
 (36) PROVIDE 2 SETS (4)#3/0&(1)#1/0GND, IN 2"C. 	
(37) (3)#1&(1)#8GND, IN 1-1/4"C.	
 (38) (3)#4&(1)#10GND, IN 1"C. (39) CONNECT SHUNT TRIPS TO AUXILIARY CONTACTS I 	N ATS.
(4) PROVIDE PROVISIONS INCLUDING CIRCUIT BREAKER OF PORTABLE LOAD BANK FOR 50% RATED CAPAG	
(4) PROVIDE 2 SETS (4)#350KCMIL&(1)#1GND, IN 3"	С.
	CONTRACT NO. KB-381-000-006
PORTATION AUTHORITY	
INING FACILITY PORTATION AUTHORITY DINT (BALTIMORE CITY) M AND FIXTURE SCHEDULE	KB-381-000-006

98 OF 113

GENERAL NO

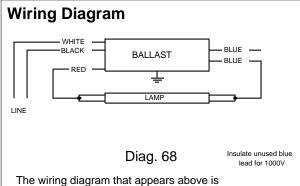
		ADDENDUMS & REVISI	ONS		POLICE TRAINING FACILITY						
	NO.	DESCRIPTION	BY	DATE	MARYLAND TRANSPORTATION AUTHORIT						
~~/					4	HAWKINS POINT (BALTIMORE CITY))				
					SINGLE LINE	DIAGRAM AND FIXTU	JRE SCHEDULE				
Y					-						
					DESIGNED BY <u>R.K.</u>	_ DRAWN BYN.S.	CHECKED_BYR.K.				
					CONST. REVIEW BY	DATE SEPT. 15, 2004	SCALEN.T.S.				

<u>GENERA</u>	L NOTES	
1. REFER TO SCHEDU FOR WIRE SIZES.	JLES AND/OR FLOOR PLANS	
DRAWING	<u>s notes</u>	
\bigcirc) HP WITH INTEGRAL STARTER/D DKW ELECTRIC HEAT.	DISCONNECT.
) HP WITH INTEGRAL STARTER/D	DISCONNECT.
	DKW ELECTRIC HEAT.	
	N,600VAC,3POLE NON-FUSED DIS ICLOSURE UNIT MTD.	SCONNECT SWITCH
	0 KW ELEC. HEAT WITH INTEGRA 0 KW ELEC. HEAT WITH INTEGRA	
\bigcirc	5HP SUPPLY FAN WITH INTEGRAL	
\bigcirc	5HP SUPPLY FAN WITH INTEGRAL	_ STARTER/DISCONNECT.
 (10) CU-4,480V,3ø,117 (11) CU-5,480V,3ø,117 		
125A IN A NEMA	,600VAC,3POLE FUSED DISCONN 3R ENCLOSURE UNIT MOUNTED.	COORDINATE EXACT
LOCATION WITH TH	IE MECHANICAL UNIT MANUFACTU FLA.	JRER.
(14) CU-7,480V,3ø,65		
AT 80A IN A NEM	,600VAC,3POLE FUSED DISCONN A 3R ENCLOSURE UNIT MOUNTE IE MECHANICAL UNIT MANUFACTU	D. COORDINATE EXACT
\sim	5 HP WITH INTEGRAL STARTER/[
(17) AHU-7,480V,3ø,7.	5 HP SUPPLY FAN WITH INTEGR	AL STARTER/DISCONNECT.
	5 HP WITH INTEGRAL STARTER/D	
💛 AT 90A IN A NEM	A 3R ENCLOSURE UNIT MOUNTE IE MECHANICAL UNIT MANUFACTU	D. COORDINATE EXACT
\sim	GENSET ANNUNCIATOR PANEL IN	
2 2 60A ENCLOSED CI	DING CONNECTION FROM NEUTRA	RIP, NEMA 1 ENCLOSURE.
23) OUTDOOR GENERA	T SIZE WITH ELEVATOR VENDOR. TOR 450KW, 480/277 3ø, 4W,	
ENCLOSURE.		
	(3)#2/0GND IN (3)4" C AND ((1) SPARE 4"C
	CIRCUIT TO PANEL RPFR2-32. , BOTH IN 1-1/4"C.	BLOCK HEATER CIRCUIT TO
27) ATS CONTROL WIR	E	
\bigcirc	(4)#3/0&(1)#3GND, IN 2"C. 5HP RETURN FAN WITH INTEGRA	I STARTER/DISCONNECT.
\bigcirc	5HP RETURN FAN WITH INTEGRA	
	IP RETURN FAN WITH INTEGRAL D9 ELECTRIC HEAT WITH INTEGRA	
(33) AHU-8,480V,3ø, 2	27MCA WITH INTEGRAL STARTER/	
(35) PROVIDE (5)#4/0,	&(1)#4GND, IN 2"C. (1)#2GND. & (1)#2 IG, IN 2—	1/2"C. (DOUBLE NEUTRAL
CONDUCTOR.) (36) PROVIDE 2 SETS	(4)#3/0&(1)#1/0GND, IN 2"C.	
 (3)#1&(1)#8GND, (38) (3)#4&(1)#10GND 		
\sim	TRIPS TO AUXILIARY CONTACTS I	N ATS.
OF PORTABLE LOA	NS INCLUDING CIRCUIT BREAKER	CITY OF GENERATOR.
(41) PROVIDE 2 SETS	(4)#350KCMIL&(1)#1GND, IN 3"(υ.
INING FACII		CONTRACT NO.
PORTATION	AUTHORITY	KB-381-000-006
INT (BALTIMORE CITY)	JRE SCHEDULE	DRAWING NO.
	-	E301
_{3Y} N.S.	CHECKED BY R.K.	SHEET NO.

98 OF 113

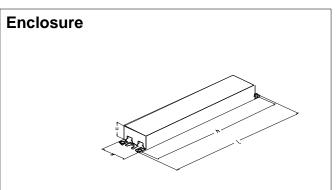
APPENDIX B FEEDER SCHEDULE

	FEEDER SCHEDULE																
				CON	DUIT				CONE	DUCTORS (F	PER SET)				SIZE OF	FRAME OR	
			NO. OF	(PER	SET)	PHA	SE CONDU	CTORS	NEU	FRAL COND	UCTORS	GROU	IND COND	UCTORS	OVERCURRENT	SWITCH	
TAG	FROM	то	SETS	SIZE	TYPE	No.	SIZE	TYPE	No.	SIZE	TYPE	No.	SIZE	TYPE	PROTECTION	SIZE	REMARKS
1		T-0															BY BG&E
2	T-0	MDP	8	3"		3	500KCMIL	CU THWN	1	500KCMIL	CU THWN	1	400KCMIL	CU THWN	3000	3000A/3P	
3	MDP	ATS DPTF						CU THWN			CU THWN			CU THWN		1600A/3P	
4	MSB	ATS SBDP	1	1 1/4"	EMT	3	3AWG	CU THWN	1	3AWG	CU THWN	1	8AWG	CU THWN	100	100A/3P	
5	GDP	ATS DPTF	1	2"	EMT	3	3/0AWG	CU THWN	1	3/0AWG	CU THWN	1	4AWG	CU THWN	225	225A/3P	
6	GDP	ATS SBDP	1	2"	EMT	3	3/0AWG	CU THWN	1	3/0AWG	CU THWN	1	4AWG	CU THWN	225	225A/3P	
7	ATS	DPTF						CU THWN			CU THWN			CU THWN			
8	ATS	SBDP						CU THWN			CU THWN			CU THWN			
9	GEN	GDP						CU THWN			CU THWN			CU THWN			
10	SBDP	LPFR-1	1	2 1/2"		3	3/0AWG	CU THWN	1	3/0AWG	CU THWN	1	6AWG	CU THWN	200	250A/3P	
11	SBDP	T-3	1	1 1/4"		3	4AWG	CU THWN			CU THWN	1	8AWG	CU THWN	70	100A/3P	
12	T-3	RPFR2						CU THWN			CU THWN			CU THWN			
13	LPFR1	RANGE CP						CU THWN			CU THWN			CU THWN			
14	DPTF	LPTF-1						CU THWN			CU THWN			CU THWN			
	DPTF	T-2	1	2"		3	2AWG	CU THWN	0		CU THWN	1	6AWG	CU THWN	175	250A/3P	
16	T-2	RPTM						CU THWN			CU THWN			CU THWN			
17	RPTM	RPTM1	1	2"		3	2/0AWG	CU THWN	1	2/0AWG	CU THWN	1	6AWG	CU THWN	175	200A/3P	
18	RPTM	RPTM2	1	2"		3	1/0AWG	CU THWN	1	1/0AWG	CU THWN	1		CU THWN		200A/3P	
19	DPTF	T-1	1	1 1/2"		3	2/0AWG	CU THWN	0		CU THWN	1	6AWG	CU THWN	110	250A/3P	
20	T-1	RPTF1						CU THWN			CU THWN			CU THWN			
21	RPTF1	RPG1	1	1 1/2"		3	1AWG	CU THWN	1	1AWG	CU THWN	1	6AWG	CU THWN	100	100A/3P	
22	RPTF1	RPTF2	1	2"		3	1AWG	CU THWN	1	3/0AWG	CU THWN	2	6AWG	CU THWN	100	100A/3P	


APPENDIX C LUMINAIRE SCHEDULE

					LUMINAIRE IN	FORMATION						
TAG	DESCRIPTION	LAMP TYPE	WATTS	# OF LAMPS	BALLAST TYPE	OPERATING VOLTAGE	FIXTURE INPUT WATTS	BALLAST FACTOR			POW	R FACTOR
A	2'X4' PRISMATIC LENSED TROFFER	Т8	32	2	ELECTRONIC	277	65	1.03	0.24	0.24	0.99	0.99
В	2'X4' PRISMATIC LENSED TROFFER	T8	32		ELECTRONIC	277	94	1	0.34	0.34	0.99	0.99
С	4' WRAPAROUND FIXTURE	Т8	32	3	ELECTRONIC	277	94	1	0.34	0.34	0.99	0.99
D	6" WIDE WRAPAROUND	Т8	32	1	ELECTRONIC	277	35	1.01	0.13	0.13	0.98	0.98
F	2'X2' SHOEBOX TYPE 2 EXTERIOR	MH	250	1	DUAL	277	290	1	1.1	1.2	0.9	0.9
G	2'X2' SHOEBOX TYPE 3 EXTERIOR	MH	250	1	DUAL	277	290	1	1.1	1.2	0.9	0.9
F/G	2'X2' SHOEBOX TYPE 2&3 EXTERIOR	МН	250/250	1/1	DUAL	277	290	1	1.1	1.2	0.9	0.9
н	WALL BRACKET FIXTURE	Т8	32	2	ELECTRONIC	277	65	1.03	0.24	0.24	0.99	0.99
I		TWIN TUBE	13	2		277						
к	WALL MOUNTED FIXTURE	Т8	25	2	ELECTRONIC	277	65	1.03				
L	INDUSTRIAL FIXTURE	Т8	32	3	ELECTRONIC	277	94	1	0.34	0.34	0.99	0.99
М	PARABOLIC	Т8	32	3	ELECTRONIC	277	94	1	0.34	0.34	0.99	0.99
N	EXTERIOR WALLPACK LIGHTING	MH	70	1	DUAL	277	94	1	0.45	0.37	0.9	0.9
0	WALLPACK PERIMETER LIGHTING	MH	100	1	DUAL	277	100	1	0.95	0.48	0.9	0.9
Р	ELEVATOR PIT LIGHTING		28	1		277						
Q	BUILDING LOGO PENDANT MOUNT	T5HO	54	1	ELECTRONIC	277	62	0.99				
R	PAR38 LAMP W/ KNUCKLE JOINT LAMPHOLDER AND MOUNTING BOX	HALOGEN PAR38	45	1		120						
т	RANGE HPS WIDE FLOOD	HPS	100	1	HYBRID ELECT	277	125	1	1	0.58	0.9	0.9
U	EXTERIOR FLAG LIGHTS	MH	175	1	DUAL	277	210	1	0.55	0.8	0.9	0.9
U1	EXTRANCE SIGN LIGHTS	МН	100	1	DUAL	277	100	1	0.95	0.48	0.9	0.9
V	LOW PROFILE WRAPAROUND	Т8	32	4	ELECTRONIC	277	121	0.88	0.45	0.45	0.99	0.99
W	INDUSTRIAL FIXTURE	Т8	32	4	ELECTRONIC	277	121	0.88	0.45	0.45	0.99	0.99
х	WALL WASH KICKER	BIAX CF	50	2		277						
EL1	FIRING RANGE EMERGENCY LIGHT		32	1		24						
EL2	FIRING RANGE EMERGENCY LIGHT		35	1		24						
EL3	FIRING RANGE EMERGENCY LIGHT		32	1		24						
Z1	LOWBAY GYM LIGHTING	MH	250	1	DUAL	277	290	1	1.1	1.2	0.9	0.9
z	LOWBAY GYM LIGHTING	МН	250	1	DUAL	277	290	1	1.1	1.2	0.9	0.9
AB	SPECIAL WORDING "RANGE IN USE"	LED				24						

VOP-2	VOP-2P32-SC								
Brand Name	OPTANIUM								
Ballast Type	Electronic								
Starting Method	Instant Start								
Lamp Connection	Parallel								
Input Voltage	277								
Input Frequency	50/60 HZ								
Status	Active								


Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	1	17	0/-18	0.08	19	1.02	15	0.95	1.7	5.37
F17T8	2	17	0/-18	0.11	31	0.90	15	0.97	1.7	2.90
F25T8	1	25	0/-18	0.10	27	1.02	15	0.97	1.7	3.78
F25T8	2	25	0/-18	0.16	43	0.88	10	0.99	1.7	2.05
* F32T8	1	32	0/-18	0.13	35	1.01	15	0.98	1.7	2.89
F32T8	2	32	0/-18	0.20	55	0.88	10	0.99	1.7	1.60
F32T8/ES (30W)	1	30	60/16	0.12	33	1.01	15	0.97	1.7	3.06
F32T8/ES (30W)	2	30	60/16	0.19	52	0.88	10	0.99	1.7	1.69
F40T8	1	40	32/00	0.15	41	1.01	15	0.99	1.7	2.46
F40T8	2	40	32/00	0.24	67	0.88	10	0.99	1.7	1.31

for the lamp type denoted by the asterisk (*)

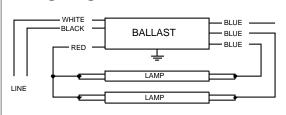
Standard Lead Length (inches)

	in.	cm.		in.	cm.
Black	25L	63.5	Yellow/Blue	0	0
White	25L	63.5	Blue/White	0	0
Blue	31R	78.7	Brown	0	0
Red	37L	94	Orange	0	0
Yellow	0	0	Orange/Black	0	0
Gray	0	0	Black/White	0	0
Violet	0	0	Red/White	0	0

Enclosure Dimensions

OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.7 "	1.18 "	8.90 "
9 1/2	1 7/10	1 9/50	8 9/10
24.1 cm	4.3 cm	3 cm	22.6 cm

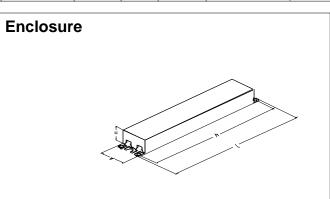
Revised 06/09/2003


Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

VEL-3	VEL-3P32-SC								
Brand Name	STANDARD ELEC								
Ballast Type	Electronic								
Starting Method	Instant Start								
Lamp Connection	Parallel								
Input Voltage	277								
Input Frequency	60 HZ								
Status	Active								

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	3	17	0/-18	0.17	47	0.99	15	0.99	1.7	2.11
F25T8	2	25	0/-18	0.14	54	1.06	20	0.99	1.7	1.96
F25T8	3	25	0/-18	0.24	66	0.93	15	0.99	1.7	1.41
* F32T8	2	32	0/-18	0.24	65	1.03	15	0.99	1.7	1.58
F32T8	3	32	0/-18	0.31	85	0.88	15	0.99	1.7	1.04
F32T8/ES (30W)	2	30	60/16	0.22	61	1.03	20	0.99	1.7	1.69
F32T8/ES (30W)	3	30	60/16	0.29	79	0.88	20	0.99	1.7	1.11
F40T8	2	40	0/-18	0.31	79	1.01	15	0.99	1.7	1.28

Wiring Diagram


Diag. 70

Insulate unused blue lead for 1000V

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

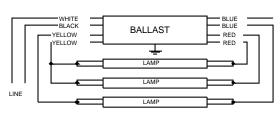
Standard Lead Length (inches)

	in.	cm.	in.	cm.
Black	25L	63.5	Yellow/Blue	0
White	25L	63.5	Blue/White	0
Blue	31R	78.7	Brown	0
Red	37R	94	Orange	0
Yellow		0	Orange/Black	0
Gray		0	Black/White	0
Violet		0	Red/White	0

Enclosure Dimensions

[OverAll (L)	Width (W)	Height (H)	Mounting (M)
	9.50 "	1.7 "	1.18 "	8.90 "
	9 1/2	1 7/10	1 9/50	8 9/10
	24.1 cm	4.3 cm	3 cm	22.6 cm

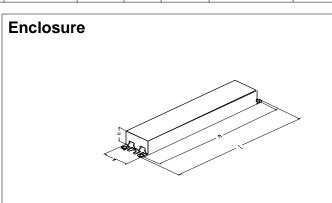
Revised 08/21/2002


Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

VEL-4P32-SC				
Brand Name	STANDARD ELEC			
Ballast Type	Electronic			
Starting Method	Instant Start			
Lamp Connection	Parallel			
Input Voltage	277			
Input Frequency	60 HZ			
Status	Active			

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	4	17	0/-18	0.22	61	0.96	15	0.99	1.7	1.57
F25T8	3	25	0/-18	0.27	74	1.04	20	0.99	1.7	1.41
F25T8	4	25	0/-18	0.32	89	0.94	15	0.99	1.7	1.06
* F32T8	3	32	0/-18	0.34	94	1.00	15	0.99	1.7	1.06
F32T8	4	32	0/-18	0.41	112	0.88	15	0.99	1.7	0.79
F32T8/ES (30W)	3	30	60/16	0.32	87	1.00	20	0.99	1.7	1.15
F32T8/ES (30W)	4	30	60/16	0.38	104	0.88	20	0.99	1.7	0.85
F40T8	3	40	0/-18	0.41	112	0.88	15	0.99	1.7	0.79

Wiring Diagram


Diag. 71

Insulate unused blue lead for 1000V

The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

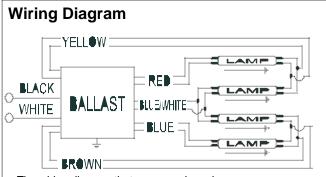
Standard Lead Length (inches)

	in.	cm.	in.	cm.
Black	25L	63.5	Yellow/Blue	0
White	25L	63.5	Blue/White	0
Blue	31R	78.7	Brown	0
Red	31R	78.7	Orange	0
Yellow	39L	99.1	Orange/Black	0
Gray		0	Black/White	0
Violet		0	Red/White	0

Enclosure Dimensions

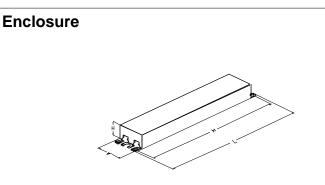
OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.7 "	1.18 "	8.90 "
9 1/2	1 7/10	1 9/50	8 9/10
24.1 cm	4.3 cm	3 cm	22.6 cm

Revised 08/26/2002



Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

VCN-4S32-SC				
Brand Name	CENTIUM			
Ballast Type	Electronic			
Starting Method	Programmed Start			
Lamp Connection	Series/Parallel			
Input Voltage	277			
Input Frequency	60 HZ			
Status	Active			

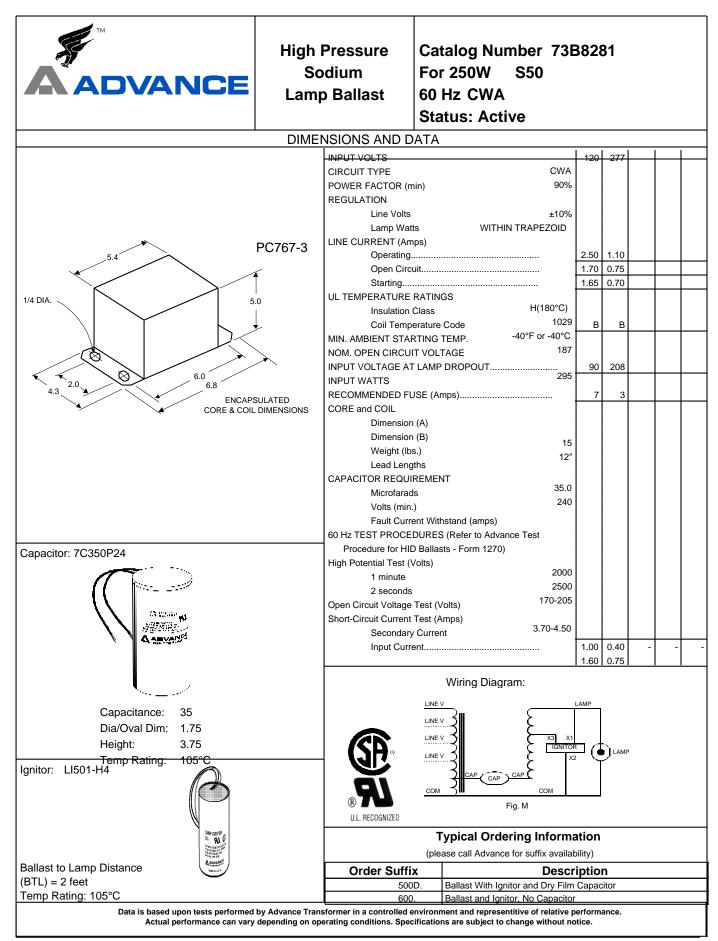

Lamp Type	Num. of Lamp s	Rated Lamp Watts	Min. Start Temp (°F/C)	Input Current (Amps)	Input Power (ANSI Watts)	Ballast Factor	MAX THD %	Power Factor	MAX Lamp Current Crest Factor	B.E.F.
F17T8	4	17	32/00	0.29	79	1.00	10	0.99	1.7	1.27
F25T8	4	25	32/00	0.36	101	0.95	10	0.99	1.7	0.94
* F32T8	4	32	32/00	0.45	121	0.88	10	0.99	1.7	0.73

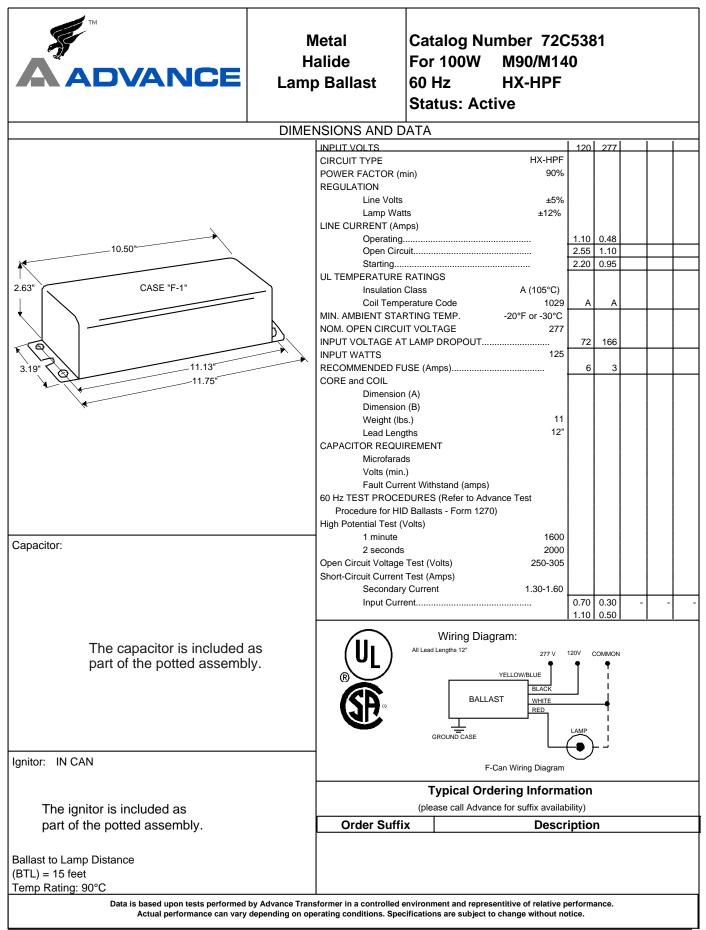
The wiring diagram that appears above is for the lamp type denoted by the asterisk (*)

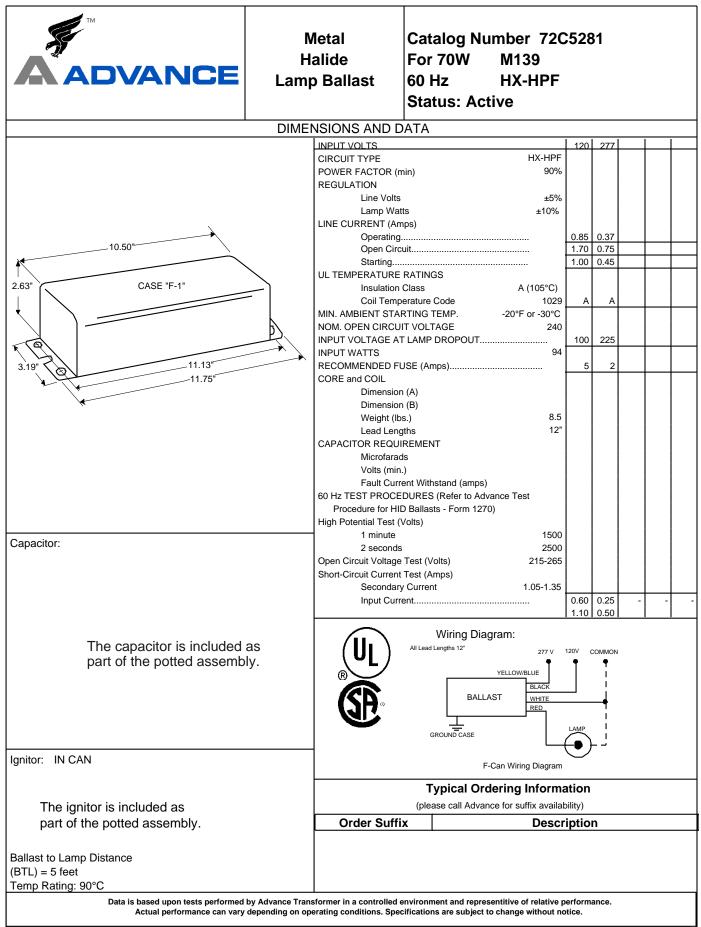
Standard Lead Length (inches)

	in.	cm.		in.	cm.
Black	22L	55.9	Yellow/Blue		0
White	22L	55.9	Blue/White	36R	91.4
Blue	36R	91.4	Brown	46L	116.8
Red	36R	91.4	Orange		0
Yellow	46L	116.8	u		0
Gray		0	Black/White		0
Violet		0	Red/White		0
	White Blue Red Yellow Gray	Black22LWhite22LBlue36RRed36RYellow46LGray	Black 22L 55.9 White 22L 55.9 Blue 36R 91.4 Red 36R 91.4 Yellow 46L 116.8 Gray 0 0	Black22L55.9Yellow/BlueWhite22L55.9Blue/WhiteBlue36R91.4BrownRed36R91.4OrangeYellow46L116.8Orange/BlackGray0Black/White	Black22L55.9White22L55.9Blue36R91.4Red36R91.4Yellow46L116.8Gray0Black/White

Enclosure Dimensions


OverAll (L)	Width (W)	Height (H)	Mounting (M)
9.50 "	1.7 "	1.18 "	8.90 "
9 1/2	1 7/10	1 9/50	8 9/10
24.1 cm	4.3 cm	3 cm	22.6 cm


Revised 03/01/2007



Data is based upon tests performed by Advance Transformer in a controlled environment and representative of relative performance. Actual performance can vary depending on operating conditions. Specifications are subject to change without notice. All specifications are nominal unless otherwise noted.

NO ILLUSTRATION AVAILABLE AT THIS TIME.	Open Ci Starting. UL TEMPERATUR Insulatio	(min) ts 'atts	HYBRID ELECT 90% ±8% ±2%	277		
AVAILABLE AT THIS	CIRCUIT TYPE POWER FACTOR REGULATION Line Vol Lamp W LINE CURRENT (A Operatir Open Ci Starting. UL TEMPERATUR Insulatio	ts /atts Amps) ig	90% ±8% ±2%	277		+
	MIN. AMBIENT ST NOM. OPEN CIRC INPUT VOLTAGE / INPUT WATTS RECOMMENDED CORE and COIL Dimensi Dimensi Weight (Lead Le CAPACITOR REQ Microfar Volts (m Fault Cu 60 Hz TEST PROC	n Class nperature Code ARTING TEMP. UIT VOLTAGE AT LAMP DROPOUT FUSE (Amps) on (A) on (B) lbs.) ngths UIREMENT ads in.) urrent Withstand (amps) CEDURES (Refer to Adv HD Ballasts - Form 1270	H(180°C) 1029 -20°F or -30°C 120 125 5.5 12" 45.0 120 rance Test	0.58 0.90 1.00 A 185 3		
Capacitor: 7C450P12	1 minute 2 second Open Circuit Voltag Short-Circuit Curre Seconda	ds ge Test (Volts)	2000 2500 105-135 4.40-5.40	1.00 - 1.50	-	-
Capacitance: 45 Dia/Oval Dim: 1.75 Height: 3.75 Temp Rating: 105°C Ignitor: IN CONTROLLER	5	Typical Ord (please call Advan fix 00D. Ballast With Ig 10D. Ballast w/Wel	RATION AT THIS TIME.	bility) iption Capacitor r, & Dry Film (Capacitor	

APPENDIX D UTILITY INFORMATION

The following is the contact information for Baltimore Gas & Electric, the utility for the Maryland Transportation Authority Police Training Facility.

BGE Gas & Electric 7317 Parkway Drive, South Hanover, MD 21076 www.bge.com

The next pages are the utility rate structure for the MdTA Police Training Facility.

GENERAL SERVICE SMALL - ELECTRIC

SCHEDULE GS

Availability: At the Customer's request, for use for all purposes where the Customer qualifies for Schedule G, and where the Customer's consumption is 2,000 kWh or more in any month.

Delivery Voltage: Service at Secondary Distribution Systems voltages.

Monthly Net Rates:

Delivery Service Customer Charge:	\$17.50 per month,
Less: Competitive Billing (where applicable)	\$ 0.47 per month, plus,
(see Section 7.7 for details)	

Energy Charges: Generation Market-Priced Service (¢ per kWh):

(Excludes Rider 8 – Energy Cost Adjustment)

<u>Type I:</u>	<u>Summer</u>	Non-Summer				
Peak	15.173	11.817				
Intermediate-Peak	9.177	10.109				
Off-Peak	7.254	7.984				
Transmission Charge For Market-Priced Service: 0.208 ¢/kWh						

Delivery Service Charge: 2.153 ¢/kWh (Excludes Rider 10 – Administrative Cost Adjustment)

Minimum Charge: Net Delivery Service Customer Charge.

Billing Seasons: Summer rates are billed for usage from June 1 through September 30. Non-Summer rates are billed for usage from October 1 through May 31.

Rating Periods:

Summer

- **Peak** Between the hours of 10 am and 8 pm on weekdays, excluding the National holidays listed below.
- **Intermediate** Between the hours of 7 am and 10 am, and the hours of 8 pm and 11 pmon weekdays, excluding the National holidays listed below.
- **Off-Peak** All times other than those defined for the On-Peak and Intermediate-Peak rating periods.

(Continued on next page)

Schedule GS continued

Non-Summer

Peak - Between the hours of 7 am and 11 am, and the hours of 5 pm and 9 pm on weekdays, excluding the National holidays listed below.

Intermediate - Between the hours of 11 am and 5 pm on weekdays, excluding the National holidays listed below.

Off-Peak - All times other than those defined for the On-Peak and Intermediate-Peak rating periods.

The Non-Summer time periods shown above will begin and end one hour later for the period between the second Sunday in March and the first Sunday in April, and for the period between the last Sunday in October and the first Sunday in November.

Holidays:

All hours on Saturdays and Sundays and the following National holidays are Off-Peak: New Year's Day, President's Day, Good Friday, Memorial Day, Independence Day, Labor Day, Thanksgiving, Christmas, and the Monday following such of these as fall on Sunday.

Average Price to Compare (includes Generation and Transmission): 9.78 ¢/kWh.

Late Payment Charge: Standard. (Sec. 7.4)

Payment Terms: Standard. (Sec. 7)

Term of Contract: One year and thereafter until terminated by the Customer.

Subject to Riders applicable as listed below

- 1. Standard Offer Service
- 3. Miscellaneous Taxes and Surcharges
- 4. Budget Billing
- 5. Controlled Air Conditioning Service
- 8. Energy Cost Adjustment
- 9. Customer Billing and Consumption Data Requests
- 10. Administrative Cost Adjustment
- 13. Change of Schedule
- 19. Demonstration and Trial Installations
- 21. Billing in Event of Service Interruption
- 22. Minimum Charge for Short-Term Uses
- 23. Advanced Meter Services
- 24. Load Response Program